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In the mid 1990s, NASA will begin assembly of Space Station Freedom, a permanent

outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must

be developed to resist the effects of amaospheric drag. One system being considered by NASA is

called a resistojet and uses highly pressurized waste gases heated by electrical resistance to provide ;

thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases i

used by the station and its inhabitants. This report focuses on resolving the issues of system

performance, flow and heater control, and materials selection and designing test procedures to :

resolve, by experimentation, any remaining issues.

The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with :

gases flowing internally through the tube with additttn^components such as regulators,

transducers, and therrnocouples. For system performance, the major parameters were calculated

from the desired thrust range, the pressure within the resistojet, andthe cold flow mode of

operation; waste gases were analyzed at 100% capacity and^552 kPa. The design team found that

any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the

design of the ventilation function. The design team proceeded with a simplified model to

determine the nozzle throat diameter and chamber diameter.

The controller design for the resistojet system is unique in that it uses a "trial-and-error"

process to control and maintain the performance of the resistojet system. The use of the MRAC

(Model Reference Adaptive Control) system has already proven itself in the attitude control of the

Exosat satellite. The MRAC system easily adapts to unknown variables, allowing it to obtain

correct impulses while the composition of the waste gases varies over time.

A systematic procedure was used to conduct the materials selection for the resistojet, and

the materials were optimized for environmental resistance and cost. The corrosion resiste_n_ce of

Molybdenum disilicide (MoSi2), an electrical heating alloy, was singled out as the only element

resistant at high temperatures to all of the waste gases because of its "self-healing" properties.

Eventually however, plantinium was selected for the heating element of the coil, while MoSi2 ,

remained the selected material for the other components. An addition of 10% ceramics is,_r__

to control the brittle behavior of MoSi2 for industrial application. In the overall consideration of

the design, the cost and manufacturing issues of a MoSi2 heating element was judged to be

impractical and non-cost effective. The final coil design consists of a platinum wire with MgO

insulation and a MoSi2 sheath for corrosion resistance. The selection of MoSi2 and ceramics in

place of platinium parts (except for the coil) results in a estimated cost savings of 98% in materials

and greater resistance against corrosion. The design team also chose to incorporate Inconel 600

for the plume shield and the casing because of its excellent properties for applications in space.and

superior corrision resistant properties. The materials selection of the resistojet components

optimizes the design for waste gas ventilation.
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BACKGROUND
r

When Space Station Freedom is finally launched into orbit and assembled, it is

expected to remain in orbit for a duration of 30 years. There is a problem, however, with

keeping the station at its designated altitude due to the fact that it is in a mict_gravity, as

opposed to zero-gravity, environment. A small amount of drag acts on objects residing in

low-earth orbit, inevitably pulling them in towards the earth if no equal and opposite force is

applied. NASA has put considerable time and effort into the research and development of a

system to maintain and control the altitude of Freedom. Spending cuts to NASA's budget

has deemed it necessary to find a low cost system with the most efficient use of

consumables.

One such system makes use of a resistojet to provide small amounts of thrust to the

station over relatively long periods of time. The resistojet uses waste gases being

discharged by other systems on the station as propellant which it heats by electric resistance

to provide additional impulse. To decide whether this system will meet the needs of the

space station, issues concerning system performance, flow and heater control, and materials

selection must be resolved.

CLARIFICATION OF PROBLEM

The basic design for a resistojet already exists; the problem lies in tailoring it to meet

the specific needs of the space station and use the available resources. The resistojet must

not only perform the function of providing impulse for altitude control, but it must also vent

all of the waste gases that accumulate onboard the station. The systems controlling the
• . . _7_ -J_ r_.
heater and tne^ta_voLtlow-ofa'_-gaseVmust maximize the amount of gas being vented while

providing the desired impulse. Interaction of the gases with each other and variability of the

composition from cycle to cycle must also be considered.

Materials conventional to resistojet design may not meet the requirements for

temperature range or the environment of space and will need to be selected carefully. Also

requiring appropriate selection is the electric resistance heating element that will be used to

heat the gases for calculated expansion. The placement of the heater within the chamber, the

size and shape of the nozzle, and the shielding of exhaust plumes are additional problems

that will need to be resolved. Procedures for testing resistojet performance must be

developed and test apparatus designed in order to help resolve issues unable to be solved by



analytical means: A specification sheet in Appendix A clarifies the constraints and

functional requirements for the resistojet.

SPECIlqCATIONS

The majority of the specifications listed in Appendix A are self-explanatory and do

not require justification; however, the design team felt that the requirements crucial to

embodiment are deserving of some degree of justification.

The chamber, heating element, and nozzle will be exposed to variable compositions

of the five waste gases being considered. Non-corrosive, non-oxidizing materials must be

selected, particularly for the heating element, the performance of which could be severely

affected by oxidation due to _ases such as CO2 and water vapor.

Considering the issue of safety, it was decided to include in the design an emergency

shut-off system powered by an independent source should the resistojet encounter a

problem such as over-heating, over-pressurization, or fire within the chamber. To

determine if any of these conditions exist, diagnostic capability would also need to be

included in the design; however, the main function of a diagnostic system would be to aid

crewmembers and ground controllers in determining when and what maintenance may be

necessary.

FUNCTION DESCRIPTION

As mentioned previously, the resistojet must perform the two primary functions of

providing impulse for altitude control and venting the maximum amount of waste gases

possible.

The process by which it will accomplish these begins with the flow of waste gases

from a storage tank to the resistojet chamber (See Figure 1). The high pressure at which the

gases leave the tank requires that the gases pass through a regulator which must bring the

pressure down to a value appropriate for passing through the chamber. Once inside the

chamber, the gases are heated by electric resistance, accelerated by a converging-diverging

nozzle, and expelled through the nozzle exit; thus providing impulse, a function of thrust

over time, and venting waste gases simultaneously.
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Temperatureandflow rate control require the placement of temperature and pressure

transducers at spdciflc points along the jet, such as at the entrance to the chamber and the

entrance to the nozzle. The thrust must also be monitored for control and diagnostic

purposes. Appendix B displays the resistojet process in the form of a function structure.
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Figure 1. Resistojet process. Waste gases pass through the pressure regulator flow

into the resistojet chamber where they are heated and released through a

nozzle.

SOLUTION VARIANTS

A comprehensive list of solution variants for each of the sub-functions described in

the previous section is shown in Appendix C. For the sub-function concerning flow

regulation, the use of a simple orifice was ruled out because it does not allow for variable

pressure. The remaining options were a mechanical and an electronic pressure regulator.

The mechanical regulator was eliminated because it is less accurate than the electronic

regulator and requires an additional electronic system to control it.

For heating of the gases, the only alternative solution to be eliminated dtadmg the

initial evaluation was that of a parallel heating mesh through which the gases would flow. It

was removed as an option because impurities in the gas mixture might clog up the mesh and

block the flow.
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The use of a manometer for monitoring the pressure of the gases was eliminated as a
r

possible solution due to incompatibility with the micrrr-gravity environment For measuring

the gas temperature, the thermister and resistance temperature device (RTD) were eliminated

because of accuracy degradation at temperatures exceeding 800"C. The use of a

thermometer is impractical and would not be able to be easily read. For monitoring

resistojet thrust, analytical means was ruled out as a solution because of lack of accuracy

and the fact that it depends upon the values determined by the pressure sensors. If the

pressure sensor fails or gives inaccurate readings, the true thrust cannot be determined.

Additionally, variation of gas composition makes analytical determination of the thrust

impractical.

Finally, for analysis and control of the parameters, the proportional (P),

proportional plus derivative (PD), and proportional plus integral plus derivative (PIE))

controllers were all immediately eliminated because of incompatibility with the system. The

proportional plus integral controller (PI) requires too much information about the system

and was therefore deemed impractical.

CONCEPT VARIANTS

For all of the sub-functions except that of heating the gases, only one solution

remains for each; an electronic pressure regulator for fl0w regulation, a pressure

tran_ucer.athermoc0uple for measuring temperature, a load cell for measuring thrust, and

a model reference adaptive controller (MRAC) for analysis and control- It is only the type

of resistive heater which changes from varimt to var,.ant.

The heater solutions Consist _ly of exis_g __- o_sistiveEating within

a chamber or variants of these. They consist of the following and are shown graphically in

Appendix D:

(1) Heated cylindrical shell with internal and external flow

(2) Finned coils with flow running perpendicular to the coil columns

(3) Internal coil with parallel, external flow

(4) Heated spheres packed together with flow traveling in between

(5) Heated cylindrical rods with flow perpendicular to the rods

(6) Cylindrical heater spanning circumference of chamber with internal flow

4
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To evaluate the six concept variants in a thorough and unbiased manner, weighting

criteria were developed and assigned weighting factors according to their importance in

satisfying the function. Criteria and weighting factors were assigned as follows:

1) Reliability .30

2) Parameter control .25

3) Heat transfer efficiency .20

4) Manufacturability .15

5) Cost .10

1.0

Reliability was given the highest weighting because of the importance of the

resistojet performing its function as needed. If the jet fails to produce the required impulse

the result of altitude loss could be detrimental to station performance. The second highest

weighting was given to parameter control because if pressure, temperature, and flow rate

cannot be maintainex! at the values required to provide the necessary thrust and prevent

condensation in the chamber, then the resistojet does not adequately serve its purpose.

Heat transfer efficiency received the next highest weighting and concerns both the efficiency

of the heater in converting the electrical power it receives into thermal energy and how

uniformly it heats the passing flow of gases. The second to the lowest weighting was given

to manufacturability of the heating component. The more difficult the heating element is to

make, the more costly and difficult it is to replace. Also, a simple design may already be on

the market eliminating the need to design and build a heater from scratch. Cost was given

the lowest weighting because it is not a driving force in the design of the resistojet relative

to the other criteria, but nonetheless, it is a constraint and NASA's budget for space station

is limited, therefore it was included in the criteria. Safety was originally considered as part

of the weighting criteria, but it was determined that all of the heater configurations were

rated equally for safety, thus it was eliminated.

In the decision matrix shown in Appendix D, the concept variants are rated 1 to 6 on

how well they satisfy each of the weighting criterion. Then the rating is multiplied by the

weighting factor for that particular criterion and the resulting products are added together in

the SUM column. The concept variant with the highest sum best satisfies all of the

evaluation criteria. Some of the variants were given equal ratings in several areas where no

differentiation could between how weU each variant satisfied the evaluation criteria.
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For control,ratingswere determined on thebasisof how uniformlythe gases could

bc heated.Thc more evenlythe gasesareheated,themo¢_ accuratethetemperature

measurements willbe,and thebetterthetemperaturecan be controUed. The heatedspheres

cause the most uniform heatingtooccur while thecylindricalrodshave the smallestsurface

areaand leastcvcn heating.

Cost ratingswere determined on the basisof availabtiityof theheatingelements.

Variants 1,3,and 6 arcfairlysimplc designsalreadyinexistenceand widely used,whcreas

heatedspheresarc not ascommon and would have tobe manufactm'cd specificallyforthe

rcsistojct.Ratings formanufacturabilitywere determined on a similarbasisand also

consideredtheconnectiontothe chamber casing,theconnection of beaterpartstoeach

other,surfacefinish,and easeof formation.

Heat transferefficiencyisa functionof contactsurfacearcaand thetime the gases

spcnd inthe heatinteractionarea.The finnedcoilsvariantwas gi"-, thelowestratingsince

the flow passesrightby the coilsand the surfaceareacontactedby the gasesissmall,

whcrcas the gases getheated themost by theheated shelland the spheres.

Reliabilitywas based on the simplicityof thevariant.The heaterswith thefewest

componcnts and the bestworking recordreceivedthehighestratings.

The heatedshcllwith intcrnaland externalflow was selectedasthe finalconcept

based on thefactthatitbestsatisfiestheevaluationcriteria.The externalheatervariantand

theinternalcoilvariantfollowclosebehind asexpected given thattheheatedshellisa

combination of thesetwo concepts.

Feasibility Analysis

Upon pcrfocming preliminary calculations on the resistojet using the selected

concept, the flow was restrained to the operafi_below. Based on

theseconditions,thechamber could not exceed a 9.7 mm insidediamc_. This geometry

limited the intcma.1/external heater element configgwation which-c_d be used. In fact,

manufacturing the selcct_ _ heater configuration was seen as a highly expensive process, _it

could be performed at all. Instead of su'uggling with the issue of trying to make the

internal/external flow confi_on work, it proved to be more feasible to work with an i

internal flow heating configuration to meet the restraints of the flow. The internal flow

hca_ng element could easily be applied by using a cylindrical sleeve with a resistive coil

wrapped around it. The analysis below justifies the selection of the internal flow heater

element configuration.
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ANALYSIS OF RESISTOJET OPERATION

The resistojet analysis began by reviewing specifications, and then imposing several

operating conditions in order to develop operational parameter requirements. This method

of analysis seemed to be the most logical approach since it produced values which were

specifically tailored for this resistojet operation. Another alternative analysis method

considered was the selection of parameters based on available resistojet technology with

similar operating conditio._s. However, the available resistojet technology uses single

componeht_fuel mixtt_ [md larger thrust requirements. Due to the unique nature of the

multi-component waste gas mixture and the desired low thrust range involved in this design,

the alternative approach was not used.

Furthermore, since the operation of the resistojet deals with waste gas compositions

that vary from one burn cycle to the next, the resistojet analysis was performed using100%

compositions of each gas. That is, each of the five waste gases were independendy

analyzed as it flowed through the resistojet. By doing this, an operational window was

created based on the high and low values produced by each waste gas. Assuming that there

are no chemical reactions occurring within the resistojet, all mixture compositions should

produce operational values which fall within this operational window.

Review of Specifications

The specifications of immediate impact to the parameter development were the

desired thrust range, the pressure within the resistojet, and the cold flow mode of operation.

The thrust range specified for this resistojet was from a minimum of 0.22 N (50 rnlbs.) to a

maximum of 1.6 N (350 mlbs). In order to guarantee the minimum and maximum thrust,

the analysis was performed from minimum thrust, minus 5%, to maximum thust, plus 5%.

The desired pressure within the resistojet chamber was 552 KPa (80 psia).

However, during the thermodynamic analysis of the waste gas flow, it was discovered that

the thrust produced by the resistojet is proportional to the pressure within the resistojet

chamber and the nozzle throat area. Therefore, in order to vary _resistojet thrust, either

the throat area or the chamber pressure would have to be varied. Since varying the throat

areaseemed to produce a complex mechanical issue, it was decided that the chamber

pressure would be varied. The 552 KPa (80 psia) requirement was used at the maximum

thrust, not including the +5% thrust compensation. By choosing 552 KPa as the highest

operational pressure, the gases are maintained as ideal gases in any mode of operation. The



minimum thrust, not including the -5% compensation, required a pressure of 68.95 KPa (10
r

psia).

An analysis of each of the five waste gases at several temperature and pressure states

throughout the system showed that H20 and CO2 are not always in their ideal gas state. At

the tank conditions, these two components are in nonideal states. However, when H20 and

CO2 are transported to the resistojet and the chamber pressure is the maximum pressure

required for maximum thrust, then they become ideal. These waste gases stay ideal

regardless of the temperature setting. For this reason, the condition of maximum pressure

and no temperature control is denoted as the "cold flow" condition.

Another specification that was addressed but was not directly incorporated in the

embodiment design of the resistojet was the direct venting of waste gases. The purpose of

the resistojet is to provide thrust to the spacecraft while at the same time venting waste gases

that are produced by spacecraft operation. Based on this requirement alone, some degree of

the venting specification was met. During the analysis of the operational parameters, an

effort was made to vent as much waste gas as possible for a specified resistojet impulse.

The minimum diameter allows for venting of more waste gases if the waste gas composition

is not 100% argon.

Operational Conditions

Based on these specifications, several operational conditions were imposed in order

to provide resistojet functionality. The first operational condition began with the assumption

that aU gases were in their ideal state and that any nonideal substances were a neglible part of

the composition. This asgumption is necessary in order to use the analytical formulas

developed for gas flow. In trying to insure that all the waste gases were ideal, the resistojet

pressure was maintained at 552 KPa (80 psia) or less. f- -----

The second operational condition is that the flow rcmain_aminar __J!g,_e

resistojet system. The condition of laminar flow is necessary to properly analyze and

control the heat u'ansfer from the heating element to the gases within the resistojet. The

laminar flow condition was enforced by targeting a Reynolds' Number value of 1900 and

using the Reynolds' equation in conjuction with a mass rate equation to determine the

chamber diameter which would satisfy this condition. The equations used in this analysis

can befound in Appendix F and the calculations for the resistojet operation can be found in

Appendix G.

Two other operational conditions are based on having negligible friction as the waste

gas interacts with the heating chamber surface. Negligible friction is necessary especially in

8
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treating the flow _ the chamber as Rayleigh flow and the flow in the ndzzle as isentropic

flow. These two conditions are necessary in order to simplify the flow analysis within the

resistojet. Furthermore, the operational conditions based on negligible friction increase the

operational stability of the resistojet.

Determination of Remaining Parameters

Based on the analysis performed for expansion of the waste gases, the resistojet

dimensions for the nozzle throat diameter and the chamber diameter were determined.

Several dimension restrictions were listed in the specifications. The only dimensions

remaining are the diameter of the tube connecting the tank to the entrance of the resistojet

and the exit area of the nozzle. The diameter of the tube from the tank depends directly upon

what NASA chooses, this dimension was unknown at the time of analysis. The assumption

was made that the resistojet inlet diameter does not significantly affect the flow of the waste

gases. For this reason, the inlet tube was chosen to be half of the chamber diamete.

In searching through the available resources on resistojet technology, several

sources were found which were helpful in determining the exit area of the nozzle.

Pugmire's article contains a resistojet analysis which is very similar to the analysis using

waste gas expansion. For this reason, it was decided that the nozzle dimensions provided

by the source would be just as valid for the waste gas resistojet. Otherwise, the

determination of the nozzle exit area would have been performed using an iterative method

and a guess of the final dimension from several candidates.

9



OPERATIONAL CONTROL
¢

System descri tipt)_.

The operation of the resistojet will be controlled by a MRAC (Modal Reference Adaptive

Control) system. A mathematical model of the resistojet system will be incorporated into an

algorithm that will then determine what changes to make in the resistojet system. The algorithm tells

the controller the amount of change that has occurred in the flow regulator and PCU (Power Control

Unit) for a given signal level. The signal levels are calibrated by test procedures performed preflight.

The algorithm also decides which parameters to change. As a default setting for the algorithm, the

control of the flow regulator will be the first to be executed. This is done because the resistojet will

respond quickly to flow regulation as opposed to temperature regulation. However, if the resistojet

cannot produce the amount of impulse need_ for a given temperature and the flow regulator is at a

maximum output, the controller will then increase the temperature until the required impulse is

achieved.

Unlike other types of controllers that require an exact model of a system, the mathematical

model to be used by the MRAC system will estimate values for temperature, pressure, flow rate, and

thrust. These values are used as references for the actual values. The MRAC system is especially

suited for controlling the resistojet system because it does not have to have insight into every

parameter in the system. Since the composition of the waste gases varies over time, it would be

difficult to derive an exact model for the system. A MRAC system uses estimated values to

determine appropriate settings for proper control of the s),stem The MRAC system essentially

adapts to the changing conditions of the resistojet system (namely the varying waste gas

composition). The adaptive nature of the MRAC system allows it to continuously search for the

optimum settings within an allowed toler_ee range by using an orderly trial-and-error process and it

allows for performance superior to that of a fixed system [Chalam, 8].

The basic equations that define the system operation are given in equation's la and lb. These

are called state equations and considered the mathematical model for the resistojet system.

10



x : A_+Bu (la)

9 --- (lb)

Equation l a is the mathematical model of the resistojet system and contains all the necessary

equations to determine the state of the system, (i.e. waste gas mass rate, pressure, etc.). As

mentioned before, these states are estimated because of the variation in composition of the waste

gases. The input to the mathematical model is the pressure and impulse. The model then estimates

the pressure, flow rate, and temperature needed to attain the required impulse. It is assumed that the

initial thrust, or cold thrust, will be significant enough to be included in the system model.

Equation lb is a matrix that contains the output conditions, which in the case of the resistojet

system is the impulse.

The actual states are determined by transducers pla'ced on the resistojet system. A pressure

transducer will be used to measure the pressure of the gas exiting the tank and entering the resistojet.

For measuring the thrust,_load cell will be situated immediately behind the resistojet. The

transducer measurements will be processed and arranged into the same state equations which are

written as follows,

: Ax + Bu (2a)

y = Cx (2b)

Subtracting equations 2a from la and 2b from lb we obtain,

- x = A(x - _) (3a)

y - _ -- C(x - _) (3b)

The difference between the actual and estimated states is then used to adjust the system settings. If

the resistojet system is stable, in that it has reached an expected thrust for example, then the

difference approaches zero. However, if the controller detects a difference between the actual and

estimated values that is beyond tolerance levels, then it will proceed to change the system

parameters, based on the algorithm, to make the difference approach zero. The control of the system

will be done by pressure regulation and temperature control.

11



Thetoleranc_tobeallowedbythecontrollerisassumedto be+2% of the actual thrust. This

means that the controller will maintain the actual thrust to within 2% of the desired thrust for correct

impulse.

The controller will have two modes of operation to fulfill the requirements of the space

station. The first mode of operation will be to provide a desired impulse. The impulse is attained by

having the controller record the thrust, via load cell, in real time and multiplying it by the time over

which it was recorded. This is done continuously and added cumulatively until the required impulse

is reached Figure 2 shows an example of how the impulse is calculated.

l Predetermined
thrust level

__ L

............................ kk,:U:::kk;:'""4::d&" :::":_::::;:kk:&g.":::'::k:':_"

Time

Figure 2. Impulse diagram with the actual thrust recorded

over time. The impulse is calculated by multiplying

the thrust by the time over which it was recorded.

If a large impulse is required, then the controller will operate the resistojet at a predetermined level

of thrust. This thrust level can range from one fourth to one half of the rated maximum thrust.

There are two reasons for these settings, one reason is to conserve power and the other is to

minimize material degradation.

The second mode of operation is considered a "cold" mode. In this mode, the controller will

allow the resistojet to vent the waste gases at a minimum thrust. This is attained by turning the PCU

off and opening the pressure regulator to maximum.

12



Parameter Measurement.

r.

Pressur.e. A pressure transducer is placed in the flow path of the waste gases to measure

pressure and is situated near the entrance of the resistojet. The controller continuously monitors the

pressure for variations and adjusts the pressure regulator to maintain the proper pressure for a given

thrust.

Temperature. High temperature Inconel, ceramic fiber insulated, type C thermocouples are

used to measure the temperature along side of the resistojet. This type ofthermocouple can

withstand harsh environments, such as space, without sacrificing accuracy. The temperature

measurements are used for determining the actual temperature of the resistojet. Since the

temperature on the outside of the resistojet is not representative of the true temperature,

approximate temperature values are calculated to determine the best estimates.

Thrust. The measurement of the thrust is achieved by the use of a load cell situated

immediately behind the resistojet with a ceramic insulator placed in between for heat protection. The

load cell emits an electrical signal when a force is exerted on it. The controller is calibrated with the

signal across all load ranges during testing. It will have a 0 to 5 lbs (0 to 22.25 N) load range with

.005% full range repeatability.

Parameter Control

Thrust. The thrust of the resistojet is controlled by regulating the pressure of the waste gases

as they enter the resistojet. As a consequence, the amount of impulse will vary depending on the

amount of thrust, (i.e. a higher thrust would mean a shorter impulse as opposed to a lower thrust for

a longer impulse). However, since there is a limited amount of waste gases in the storage tanks

before they are refilled, a time limit will be set to get the most impulse from the available waste

gases. The amount of thrust would thus depend on the impulse limit imposed on the controller.

PCU The temperature of the heating element would be regulated by the controller via the

PCU. The controller adjusts the temperature in accordance with impulse within a range of

temperatures up to 1400°C (2552°F). However, three settings will be used for the resistojet system.

The first is a "cold" setting in which the heating element is not heated. This will allow for "cold"

13



thrust and venting of gases with minimal impulse. The second setting will allow the controller to

maintain the temperature between 300°C and 500°C (572°F to 932°F). This temperature range will

keep the gases, primarily H20 and CO 2 ,from condensing in the resistojet chamber and will prevent

hydrocarbon cracking when hydrocarbons are present. The last setting allows a maximum

temperature that would allow a maximum impulse.

Cable protection. All cables that connect the resistojet system to the controller will be

protected by Nextel ® ceramic fiber. This fiber is able to withstand extreme temperatures and the

harsh environment of space and thus protecting the cables. A redundant cable network is connected

to the resistojet system in case of cable failure.

Emergency shutoff system. The controller serves three functions for safety of the

crewmembers as well as the space station. The first function of the controller is to continuously

monitor the status ofthe resistojet system via temperature and pressure. The second function is to

alert the crew and the third is to shut the resistojet system off in the event of an emergency. In the

event of a manifold rupture, for example, the controller would detect a sudden drop in pressure and

signal an alert. At the same time, the controller would automatically shut off the pressure regulator

to prevent further waste gas leakage.

Calibration. The calibration of the controller will be conducted in an Earth-bas_ test area.

The pressure transducer will be subjected to various, known pressures. The MRAC controUer will

then be calibrated at each pressure for the entire range of expected pressures. The same procedure

will also apply to the thermocouples. The thermocouples will be subjected to the various

temperatures to be expected. The test will be conducted in a vacuum environment with the ambient

temperature the same as that in space to obtain accurate output signals from the thermocouples. The

load cell will be calibrated using a set of known weights. A known set of weights will be applied to

the load cell and the signal output from the load cell will then be calibrated into the controller.
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MATERIALS SELECTION

S_:Icction Procedure

The selectionprocessof materialsisthenext stepto linkingthcconceptualmodel todcsign

productionand optimization.This sectionof thereportwilldiscussthc selectionprocedureused.

A systcmaticprocedure ofcombining environmentalconditionsand functionalrcquircmcntswith

selectioncritcriaand materialpropertieswas used tocffcctivclychoose theappropriatematerials,.

This selectionprocessislimitedtothescope of thedefinedconceptualsystem,spe.cificaUythc

rcsistojctitself.Through the selectionprocess,thepropermaterialsarematched with the

conceptualmodel.

As detailedinthc previoussections,thedesignconditionsof thesystem re,quirespecific

rnatcrials.One of theprimary considcrationsisthefunctionalrequirements.The basicfunctions

requiredby thissystem arcventilationand altitudecontrol.These operationsare constrainedby the

dcmands forextended operationallifeand thcintrinsicdegrading propertiesof thevarious

propellants.Additionally,itisa ncccssityforthc system tocontrolany impinging contamination

ofthespacecraftenvironment. With the adoptionof thesefunctions,thcnext stepinoptimizingthe

selectionof materialsistodetailthcenvironment withinthesystem boundary. The majorityof this

stcphas bccn done in theprevious sectionsof thisreport.Externally,the gcncralconditionsof

opcrationarcthc near zerogravityand pressureofearth'sorbit.The drag forcesand theirvariation

arcone of the sourcesof the motivationofthe design.Imcmally, thercsistojctwillbc subjectedto

conditionsofrelativelyhigh temperaturesand pressures,along with an interfacebetween the flow

of waste gases propcUants.While thevariationof operationalparametersof temperatureand

pressurehave bccn definedintheprevioussection,theconditionsof thcpropellantsarc notably

variable.To provide a base forcomparison of atmospheres,a tableof thcvarioustypesof furnace

atrnosphcrcsarclistedin theAppendix H. With thcsedesignconditionstheselectionprocesscan

bc continued.

Development of Selection Criteria

To proccdc with the embodiment of the resistojct, the design parameters were used to

develop the criteria for the selection of materials. By grouping the specifications and required
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materialproperties_to threecategories,anexhaustivelist of selection factors was created (See

Appendix I). These points were then condensed into important selection factors. The selection of

the different materials were judged based on these 9 points. They are as follows:

1. Creep. The material must withstand the thermal cycling of the temperature variation

over its projected lifetime.

2. Environmental Resistance. The material must maintain an erosion corrosion

resistance of no more than a 10% loss during the projected life. Additionally, the reaction

of the multipropeUant gas to the system must not produce effects which sufficiently shorten

the projected life.

3. Electrical Properties. The heating element must sufficiently convert electrical power

resistively into thermal energy.

4. Conduction. Heat transfer from the heating element to the fluid flow must be

effective. The system also must guard against thermal contamination of the space craft.

5. Temperature Capacity. The materials must maintain its structural integrity at the

maximum projected temperature of operation.

6. Quantity. The projected production will be limited to 8 units and 2 spares.

7. Manufacturability. The materials must be able to maintain a pressure tight

configuration for the projected flow of fluid. The materials choosen must be producible in

terms of the resistojet design. Previously manufactured materials are considered premium.

8. Service Life. The materials must have at least an operation life of at least 10,000

hours.

9. Cost. The materials selected will be evaluated to consider the relative costs of the

materials and their manufactta'e.

Desi_ and Selection.

To begin the design and selection of materials, a list of general parts was developed. By

incorporating the environment and the selection criteria for each specific part, the design of the

structural members of the resistojet was possible (See Appendix I.). This section will discuss the

specific design and development of the individual parts.
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Thematerialsselected for the heating element will be the most crucial to
r

the success of the design. The heating element's operation is significant to the continued operation

of the resistojet. First, a material must be capable of converting electrical power resistively into

thermal energy. Additionally, the heating element must withstand high temperature corrosive

environments and thermal cycling. High temperature operation requires that the material selected

maintains its strength as temperature increases.

These types of electrical resistance alloys are known as heating alloys, and they range from

various metallic alloys of nickel or iron to pure metals and nonmetaUics. The materials that are

capable of heating to the temperatures required by the design are somewhat limited (See Table I.).

Several of the materials are limited by the requirement of operation with certain environments. For

the design of the conceptual heating element, it was assumed that the operating environment varies

by composition. The only materials that are capable of operating at the required temperature in air

are platinum, silicon carbide (SIC), and molybdenum disilicide (MoSi2). All have excellent

oxidation resistance in air at elevated temperatures. Platinum, however, is not recommended for

heating various atmospheres, specifically H2. MoSi2 is unique in this group in that it maybe used

with excellent corrosion resistance at elevated temperatures in predominately all atmospheres (See

Table 2.). The resistance to corrosion is the result of a film of silica glass that forms on the surface

of MoSi2 at 980* C [ASM Metals Handbook, p.640-6,0,8].

In comparing the high temperature strengths of platinum and MoSi2, the design team

sought to continue to evaluate the selection of a heating alloy. Resem'ch conducted by NASA and

various contractors have found that two types of grain-stabilized plalinum (yttria [Y2,o3] and

zirconia [ZrO2]) increase their creep resistance and high temperature strength [Whalen, p.540].

The research also states that ammonia causes detrimental effects to the structural integrity of

platinum. MoSi2 shows a stark contrast to platinum's strength. Pure MoSi2 at room temperature

is too brittle for reasonable use. However, by adding a mixture of 10% ceramics, the brittle

behavior is controlled for industrial application. In fact, the nonmetallic has properties described as

"self-healing" due to the plastic formation the thin silica film. This self-healing characteristic has

been credited for the successful cycling of MoSi2 from room temperatta-e to 1650" for 20,000

cycles. Still the tensile strength of MoSi2 plus I0% ceramic additives is half of platinum and this

factor is worse for SiC which is too brittle to be considered in this application [ASM Metals

Handbook, p.6,40-648]. (The rest of the report will refer to MoSi2 (+ I0% ceramic additives) as

MoSi2).
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Table I.

Heating Alloys Applicable to the Resistojet Temperature Specifications

Basic Composition, %

Pure Metals

Molybdenum *

Platinum

Tantalum *

Tungsten *

Nonmetallic Materials

Silicon Carbide

Molybdenum Disilicide

MoSi2 + 10% ceramic

add.

Graphite *

Approximate Melting Point

C ° F*

Maximum Furnace

Operating Temperature

C" F"

2605 4730 1650 3000

1770 3216 1500 2750

2975 5390 2480 4500

3375 6116 1650 3000

2410 4370 1600 2900

Y _9 3775 1700 to 1900 3100 to 3270

A,_00 3270 1700 3100

3650to3695 6610 to6690 2205 4000
II

* Temperatures valid for operation in inert or vacuum environments only.

Source: ASM Metals Handbook, 1983.

The design team chose to use MoSi2 in the embodiment of the heater configuration The

judgement was based on the nonrnetal's ability to maintain its strucnnal and functional capacity at

high temperatures, specifically in the atmospheric conditions of the possible waste gases. MoSi2

is the only material that is recommended for use for all the projected waste gases aboard the station

at the temperatures specified for the design. The team considered the additional cost of the

processing and fabrication needed by MoSi2 t_ be significantly less than the exorbitantly high cost

of platinum ($5,038/in 3 or $6,500/1b compared to approximately $25/in 3 or $30/1b) [Budinsld,

p.597]. MoSi2.additionally maybe applied to structures as a plasma spray.
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Table 2

Maximum service temperatures for MoSi2 heating elements

Temperature

Atmosphere C" F"

Air 1700 3100

Nitrogen 1590 2900

Argon, helium 1450 2730

Dry hydrogen 1350 2460

Moist hydrogen 1460 2660

Carbon dioxide 1590 2900

Carbon monoxide 1450 2730

Sulfur dioxide 1590 2900

Partly burnt 1400 2550

ammonia

Methane 1350 2460

Source: ASM Metals Handbook, 1983.

Heating Element Desi_. The design of the heating element consists of a double helix coil

as shown in Figure 3. The coil carries the current loop and is resistively heated radially out

towards the surface of the material. This element is functionally available and has been used

successfully in previous designs. The coil apparatus consists of a platinum-rhenium (Pt-lORt)

heating element insulated with a magnesia (MgO) ceramic. This wire is then enclosed in a

platinium sheath. The design team seriously considered using a different material for the coil.

However, in the overall consideration of the design, the cost and manufacturing issues of a heating

element made of MoSi2 was judged to be impractical and non-cost effective. The team did opt for

a modification to the coil apparatus. In previous applications, designers had chose to change the

Pt-10Rt sheath to a grain stabilized platinuim alloy as mentioned before [Morren, p.12]. The

design team suggested the sheath consists of MoSi2 deposited by Chemical Vapor Deposistion

(CVD). An analysis of the dimensions and a schematic of the heating apparatus is contained in

Appendix J.
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Figure 3. Heater coil. The coil design consists of a platinum wire with MgO insulation and

a MoSi2 sheath. This design is one that was modified by incorporating the

MoSi2 sheathforcorrosionresistance.

_eat Exchanger Desifm_ The design team choose to coupled the heating coil with an heat

exchanger for the development of the thermal wansfer process. The justification for this application

is to protect the coil material from short circuiting and insure long life. Additionally, the efficiency

of the heat wansfer is not effectcd in a large amount. For the construction of this part, a MoSi2

machined tube to perform as the heat exchanger. The selection of MoSi2 remits in a estimated cost

savings of 98% for the production of the heat exchanger [Budinski, p°597]. The part will also be

able to effectively resist the corrosive effects of the majority of available waste gases, including

NH3 which severely attacks platinium components. The downsidc to this selection is as MoSi2

approaches its melting point (1800" C) there is evidence of plastic flow. Based on ttie maximum

level of temperature that will occur in this system, the design team considered this factor to be

reserved for further development in their recommendations.

The configurationofthenozzleiscontainedinFigure4. The nozzlewillbe made

ofMoSi2 withdimensionsbasedon thetheorhcticalconsiderationspresentedwiththesystem

operation.Thiscalculationsarebasedon idealflowwhich would producean expansionnozzleof

a halfangleof25".The placementofMoSi2 inthenozzleiscriticaltocorrosionresistence.The

inlctdiameterwillseethegreatestamount ofmass flowthroughthesystemoperation.Additional
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concerns include the design of the external plume shield against the exiting mass flow and the
r

protection of the space craft from contamination. These issues will be discussed in the design of

th_casing.

Thermal and Radiation Shielding. Radiation shielding defines the ability of the jet to

maintain its efficiency during high temperamr_ operation. The level of temperature into the

subsquent shielding is on the order of 75% and 30% in previous designs of the resistojet. The

design team considers the thermal protection of the load cell to be critical to its operation. A layer

of ceramic insulation (an inch compacted MgO) was included surrounding the heater coil. This

should improve the efficiency of the heating apparatus as well as save the high cost of platinium.

Between the casing will be additional nickel coated alumina shielding from INCO@ Specialty

Powder Products. The high purity nickel coating will insure the structural integrity resistence.

Alumina will also be incorporated into the mounting structure of the jet to assure thermal shielding.

0.38'

0.06"

\

Figure 4. Nozzle configuration. Based on the calculations of the operating conditions, the

dimensions of the nozzle have been produced. The material selected for the

nozzle is MoSi2.
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Casing and Plume Shield. The casing of the resistojet uses Inconel@ 600 alloy to provide

the structural protection for the exposure to space. Inconel 600 has excellent properties for

applications in space. The design team also choose to incorporate this alloy for the plume shield

because of its superior corrision resistant properties. The plume configuration is posed at 45%

around the edge of the jet. For the expansion of the expelled gases, this will provide the maximum

amount of protection to the space craft [Morren, p.18]. A schematic of the materials selected for

the resistojet is presented in Figure 5.

/

/

Propellant inlet

\

Incon©l

I_vct leads
Inconei 600

IdgO

Figure 5. Rcsistojct materials. The schematic shows the materials and their configuration

as preposed by the design team. MoSi2 has been choosen to replace platinum in

numerous sections of previous designs. The design team estimates a cost

savings of 98% over the use of plafinium and asignifigant increase in the types of

waste gases that may be vented through the resistojet.
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DESIQN OF TEST PROCF,_DURES

The testing of the entire resistojet system consists of a test apparatus set up in a vacuum

environment. The setup consists of a mock-up of the structure station onto which the resistojet

system will be attached.

A load cell is used as the measuring device for the thrust and will be situated immediately

behind the resistojet. The load cell has a Nextel ® ceramic insulator to minimize or eliminate the

effects of temperature. The resistojet will be tested for the complete range of operating temperatures

and pressures specified by NASA. However, a safety margin for the resistojet will be used.

Although the maximum temperature that the heating coils will encounter is 1400°C, tests conducted

by the American Society of Metals on molybdenum disilicide concluded that the material can

withstand 20,000 temperature cycles up to 1650°C without serious degradation. In the unlikely

event that the resistojet experiences such a high temperature, there will be no permanent damage to

the resistojet itself. The pressure range that the resistojet will be tested under will be from 0 to 1000

psia. Since the design and operation of the resistojet system does not call for pressures as high as

1000 psia, the resistojet should be able to sustain the pressure for a short amount of time before

permanent damage occurs.

Other necessary testing procedures consist of quantifTing the materials system to different

atmospheres. This area of design is the most aggressive of the project. The use of MoSi 2,

particularly in the design of the heat exchanger, also needs to be tested. The use ofMoSi 2 in the

heating coil is not as crucial to this project. There already exists a wide base of data from previous

experimentation, and the use of the MoSi 2 sheath is not critical to the heating coil performance. The

design team proposes that the heat exchanger be tested by developing a prototype and operating it at

the specified conditions.To pet"formthistest,a singleresistojetshouldbe mounted inan

encapsulatedceramic mount. Thermocouples should be strategicallyattachedto measure the actual

temperaturesproduced by the system,and the resistojetshould be testedwith the waste gases aboard

the space station.Post-firinganalysisof corrosionand the microsm_cture willallow the predictionof

performance and operatinglife.These testsare importantto insuringthe production and cost

effectivenessof the resistojets.
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A combination a ventalation and expansion of waste gases was designed for part of the

required altitude control for future spaccraft. This report focused on resolving tt'_ ;ssues of

resistojet which include: system performance, flow and heater control, materials selection and

design test procedures. The resistojet design was formed from a conceptual model of a shell

Wrapped by a resistive coil with gases flowing internally through the tube. Major parameters were

calculated by analyzing each waste gas and show that the specified waste gas will behave ideally at

this pressure at any temperature, but water and carbon dioxide tend not to behave ideally over

different pressures. The design team designated 552 kPa and no temperature input as the "cold

flow" condition and found that any ventilation under all conditions would produce thrust.. The

design of the ventilation function was limited to recommendations. A proven "trial-and-error"

controller was selected. The Model Reference Adaptive Control system was judged to fit the

design since it will easily adapt to changes within the system. While plantiniurn was selected for

the heating element of the coil, other elements in the system were replaced with MoSi2 + 10%

ceramics for an estimated cost savings of 98% in materials. The materials selected for the resistojet

optimize environmental resistance and cost. Additionally, a variety of testing procedures were

selected.

Recommendations

Several recommendations can be made to further develop the full potential of resistojet

technology. One possible recommendation for future research is the possibility of using other

mixtures of waste gases such as ammonia and hydrogen. This research may encompass further

analysis into material selection.

Since a large part of the numerical analysis was "ady simplified by using ideal gas

assumptions for the waste gases, further analysis can in,: de calculations of temperature, pressure,

mass flow rate, etc. at non-ideal conditions.

ORIGINAL PAGE IS

OF POOR QUALITY
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The resistojet in the embodiment design is limited to a thrust range no greater than 0.350

lbs. Further testing can be done to increase the thrust range to a maximum level while still meeting

operational life requirments. Modifications can be made to the resistojet structure to help it

withstand the higher pressures so that it can be implemented to provide greater impulse. The

modifications can include stronger manifold attachments, resistojet chamber stiffening, material

selections, etc.

A more accurate way of acquiring information about the temperature and pressure of the

waste gases within the resistojet during f'wing can be attained by further research. Thermocouples

and pressure transducers capable of withstanding the harsh environment of the resistojet can be

implemented internally within the resistojet without adversely effecting the flow characteristics.

A key recommendation for further research is the venting of gases without producing

thrust. Two alternatives can be tested, one is the venting of waste gases at a low pressure and

temperature. The second alternative is installing two opposing bleed valves on the flow path to the

resistojet. Opposing the bleed valves can eliminate net thrust and prevent the venting from

imposing a moment on the space station.
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AppendixA
Specification Sheet

NASA

Johnson Space
Center

D

Chg W
C

for

Specification

Resistojet

Requirements

C

C

C

C

C

C

W

C

D

D

D

D

D

D

D

W

Jets not to exceed: 2.4" diameter casing

3.8"diameternozzleexit

9.4" lengthof enlJreassemb_

2. Forces

Thrust: 50 - 350 mlbs

Uftoff acceleration: 3.3 g

Impulse: goal is 2xl 06 I:)f/sover ifetime

3. E[tP..[_

Power : 500 W max to heating component

125 W average

Pressurized waste gases: 6 cu. ft.

Multipropellant capability

4. M_edal

Manifolds, casing, and nozzle: non-corrosive,

woddngtemp. range -50- 1500 °F,

compatiblewith allwaste gases

Failure criteria: 10% erosion over lifetime

Control pressure regulation

Temperature sensing

Output of watt usage

Heater control and feedback

Flow rate monitoring

Rsp

page 1

Vefi_

measure

measure

measure

measure

pre-launch testing

measure

measure

measure

measure

pre-launch testing

performance check

measure pressure

measure temp.

measure

pre-launch testing

measure flow rate
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NA SA

Johnson Space
Center for

Specification

Re_o_

D

Chg W
C

Requirements

D

D

D

D

D

W

D

C

C

D

D

D

D

C

D

W

7..,2_U.

Placed clear of EVA workstations,sensitive areas

Clearance should be 6" radially around jet

Emergency shut-off capability built into system

8. Er.g.ozzo.E_

Repairable on orbit

Maximum of 2 crewmembers to repair

Prefer repair by single individual

9._

Integrated into structure pre-launch

8 units required, 2 additional spares

lO. g.ua/Lty...r,_t_

Lifetime: 18 yrs (10,000 thermal cycles over 18

yrs)

Testable invacuum chamber or by other means

Assembled and integrated into structure pre-

launch

Modular construction

12._

Must meet NASA standards for vibration of station

13.g.o.st

Not to exceed: $100,000 to $300,000 per jet

14. Maj_e4_

Diagnotic capability built into system

Should have purging capability to flush

contaminants out of manifolds

Rsp

check station

design

measure

pre-launch test

pre-launch test

pre-launch test

pre-launch test

count

statistical analysis

test in vacuum

pre-launch fit test

pre-launch fit test

test in vibration

chamber

detailed cost

estimate

test diagnostics
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Appendix E

Assumptions

i. The waste gases behave ideally within the resistojet during the expansion process.

Any condensed substances have negligible masses when compared to the ideal gases.

2. Ratio of specific heat to specific volume is not pressure dependent, it is only a

function of temperature.

3. The stagnation pressure and temperature at the entrance to the resistojet are the

pressure and temperature found within the waste gas tank.

4. The section from the waste gas tank to the entrance of the resistojet is isothermal.

5. Chemical equilibrium is established within the chamber and does not shift within the

nozzle.

6. The working fluid is homogeneous and invariant in composition throughout the

chamber and the nozzle.

7. The waste gas flow is steady and constant with no flow vibrations or discontinuities

within the resistojet.

8. The flow is laminar throughout the expansion process.

9. There is no pressure difference which exists between the inlet and outlet of the

chamber during the expansion process.

10. Optimum expansion occurs within the resistojet system. This means the flow

upstream of the nozzle throat is subsonic (M < 1), the flow at the throat is sonic (M =

1), and the flow downstream of the throat is supersonic (M > 1).

11. There are no shocks that occur within the resistojet system.

12. The friction produced between the gas and the chamber is small to negligible.
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13. Theflow within thenozzle section of the resistojet is iscntropic.

14. The momentum of the exhaust gases leaving the nozzle is largely in the axial

direction, with negligible momentum occuring perpendicular to the central resistojet

axis.

/
15. Flow is ideally expanded at nozzle exit so that the exit pressure is equal to the

ambient pressure (Pc = Pa).

16. The heat is uniformly distributed to the waste gas flow from the heating clement.

17. The flow in the resistojct is choked flow, with a roach number of M= 1 existing at

the nozzle throat.
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Appendix F

Thermodynamic Analysis of Gas Flow

General Iscntropic Flow

The following equations were used in analyzing the waste gas flow within the

resistojet. These equations are used in conjunction with the assumptions listed in Appendix

E.

For the isentropic flow found within the resistojet, including the nozzle, the

following relations apply.

k-I

.-1 (1)

where x and y represent different points found within the isentropic flow, T

represents the temperature, p represents the pressure, V represents the volume, and k

represents the specific heat ratio.

The stagnation temperature or total temperature To is defined as

V2

To = T _ (2)
(2cpJ)

where T is the fluid temperature, v is the gas velocity, Cp is the specific heat

constant, and J is a conversion constant

Similarly, the stagnation temperature To is related to the stagnation pressure Po

using the relation

r -tp) -t J
(3)

By using equation (2) in conjunction with the definition of the mach number (where

a represents the speed of sound)
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V V

M=a=TW f

a relation between the stagnation temperature and roach number is developed.

(4)

To = T(l +2 (k-1)MZ )
(5)

This equation can be use to determine roach number M in terms of temperature.

The equation then becomes

M _k-l\T-
(6)

Isentropic Flow in a Nozzle

In analyzing the isentropic flow through a supersonic nozzle, the chamber

temperature is considered to be equal to the stagnation temperature and also equal to the

nozzle inlet temperature T1. The nozzle outlet temperature is denoted as T2. Using this

notation, the nozzle exit velocity is

I5 (tl'-'--/-

v 2 = RT[1- ] (7)

where k remains constant throughout the flow process and the gas constant is R.

Since the flow in the resistojet is considered to be choked flow, the maximum flow

in an isentropic expansion nozzle produces critical parameters. One of these critical

parameters is the throat pressure required for maximum flow. The equation relating the

throat pressure (critical pressure) to the inlet pressure is

(8)

Likewise, the equation for critical velocity vt is
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v, = RT t = (9)

and theflow mass rateequationthrough thecriticalsectionof thenozzleis

/ (t+t)
.If 2 _

(I0)

is used

To determinea velocityof ata pointx downstream of thethroat,thefollowingratio
/

v /k+,I,-- -f l' / (11)

The most critical equations used in the analysis deals with the thrust. Normally,

thrust is a function of pressure and temperature

F= _m +(p_- p,)A_ (12)

where temperaturedirccdyaffectsthemass rateth and theexitvelocityv2.

However, inthe caseof thercsistojct,the ambient pressure P3 isequal to zero

because of the space environment. Furtheranalysisof equation(12)leadstothe following
I k+l-

F=A,p, k-1 k+l

which reduces down to

" l+l

• ]2k2( 2 "_=T

r - .=.,p,'77-mTt.7_-iJ (14)

because optimum expansion requiresthattheexitpressurePl bc equivalenttothe ambient

pressurewhich iszero. Equation (14)shows thatthercsistojetthrustisdirectlydependent

on thechamber pressure.
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Appendix I-

Corrosive G_. -s

Type

Reducing Atmospheres

Exothermic unpurified

Exothermic purified

Endothermic

Charcoal

Dissocia_d ammonnia

Carburizinl_ Atmospheres

Endothermic+Hydrocarbon *

Endothermic+Hydrocarbon+ammonia *

• No standard composition

Source: ASM Metals Handbook, 1983.

N_

71.5

75.3

45.1

64.1

25

. ° °

Composition, voi%

CO

10.5

11.0

19.6

34.7

• • •

• • •

CO2 H2_

5.0 12.5

•.. 13.0

0.4 34.6

... !.2

... 75

,,, •=.

.... .•.•

Typical

Dew Point

CH4 C* F°

0.5 +27 +80

0.5 -40 -40

0.3 +I0 +50

•.. -29 -20

•.. -51 -60

• • °

• • °
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Appendix I

Materials Selection

SELECTION CRITERIA DEVELOPMENT

properties

1. Mechanical

a. Creep

b. Wear

2. Physical

a. Electrical

b. Conduction

c. Melting Point

3. Chemical

a. Conduction

Available

1.

2.

Minimum order requirement

Special processing required

1. Quantity required

2. Anticipated service life

3. Fabricability

PAd32.LI,ILT 

1. Nozzle

2. Heating element

3. Heating element insulation

4. Heat exchanger

5. Heat shields

6. Mounting devices

7. Mounting insulation

8. Casing

9. Power leads

10. Gas Lines

Other: Coatings, gaskets, mounting, interfaces
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Propellant inlet

Power leads

Inconel 600-_

I
I

_.--lnconel 600 MgO_

_iilcide

Figure 1. Heater configuration. The system consist of functional elements of a coupled

resistive heater coil and heat exchanger. This design is one that was modified

by incorporating the MoSi2 sheath for corrosion resistance.
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Appendix J

Heating Apparatus
i

This appendix presents the analysis of the heating coil. To insure that the heating element

does not short the platinium-rehdinium coil be protected by an insulating material. The

platinium-rehdinium wire will be coated with a layer of MgO ceramic. Further analysis is

necessary to specify the subsquent length of the coil and the diameter of the MoSi2 wire. From

the previous data based on resistojets, the analysis is avaliable. The minimum diameter of the

wire is related to the current I through the wire and the resisitivity of the material:

412 law
(dwire)min = (' ) 1/3

x 2 q=

Where Pw is the resistivity of the heating alloy. From this prespective, the design of the heater is

reduce to the optimization of the diameter and the heat transfer. The heat transfer is is

quantatified by the exchange of thermal energy between the propellant heat exchanger and the

heater current/voltage options. The amount of the power dissapated per unit length (P/l) is:

412 dpw/dT

(p/l) = (, ) Tw

dw

The heater length L decreases as the quantity of the heater current divided by the heater diameter

(I/dw) decreases for a fixed power. If the heater wire temperature (Tw) increase can be assumed

to be linear, then the heater length is approxiamately:

1

L = (_ P)/2 (dwf0 ( ) Tw

(Pw/'r) (Tmax + Tin)

The resulting dimensions is contained in the following table.
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Table 1.

Heater Coil Calculations Data

Known conditions Value

Power 500 W

Current

Haximum Heater Temperature

Terminal Temperature

35 Amps

1670" K

400"K

Calculations Value

Diameter 0.060 in

Heater Length (Coil) 78.7 in

Source: _e, p.3-5.

45



ASM: Metals Handbook, 9th ed., vol. 2, "Eleca'ical Resistance Alloys," (Metals Park,

OH: American Society for Metals, 1983).

Budinski, K.G., Engineering Materials - Properties and Selection, 3rd ed. (Englewood

Cliffs, NJ: P Prentice-Hall, 1989).

Chalam, V.V., Adaptive Control Systems (New York: Marcel Dekker, Inc., 1987).

Fortescue, P., and Stark, J., Spacecraft Systems En_trineering, (New York: John Wiley &

Sons, 1991).

Holman, J.P., Heat Transfer, 7th ed. (New York: McGraw-HiU, Inc., 1990).

Howell, J.R., and R.O. Buckius, Fundamentals of Engineering Thermodynamics (New York:

McGraw-Hill, Inc., 1987).

Incopera, F.P., and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (New

York: John Wiley and Sons, 1990).

Klemetson, R.W., "Evaluation of Oxygen /Hydrogen Propulsion Systems for the Space

Station," (Pasadena, CA: Jet Propulsion Lab, 1985).

Levy, A.V., "Extreme High Temperature Materials,"Materialsfor Missiles and

Spacecraft (New York: McGraw-Hill, Inc., 1963).

Morren, W.E., "Performance and Endurance Test of a MultipropeUant Resistojet for

Space Station Auxilliary Propulsion," (New York: American Institute of Aeronautics

and Astronautics, 1986).

Nise, N.S., Control Systems Engineering (Redwood City, CA: Benjamin / Cummings,

Inc., 1992).

Potter, M. C., and Wiggert, D. C., Mechanics of Fluids, (Englewood Cliffs, New Jersey:

Prentice Hall, 1991).

46



Pugmire,T.K., "A 10,000 Hour Life MultipropeUant Engine for Space Station

Application," (New York: AIAA, 1986). _ ,"

Whalen, M.V., and S.P. Grisnik, "Compatibility of Grain-Stabilized Platinum with

Candidate Propellants for Resistojets," (New York: AIAA, 1985). _ -
"D

Williaume, R. A., Jaumotte, A., and Bussard, R. W., bluclear. Thermal. and Electric

Rocket Propulsion (New York: Gordon and Breach Science Publishers, 1967).

47


